The Reaction of CH₃ + NO in Gaseous Phase

Hui WANG, Zhou LU, Fan Ao KONG*

The State Key Lab of Molecular Reaction Dynamics,the Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080

Abstract: Time-resolved Fourier transform infrared emission spectroscopy is employed for studing gaseous reaction of CH_3 with NO. The CH_3 radical was produced by laser photolysis of CH_3Br at 248 nm. The infrared emissions of vibrationally excited nascent products HCO (v_3), HCN (v_1 , v_3), NH₂ (v_3), secondary product HNO (v_1) and possible product HNCO (v_1) were observed. It verifies that the reaction channels of HCO + NH₂ and HCN+H₂O exist, and that one other channel HNCO + H may also occur.

Keywords: CH₃, NO, TR-FTIR, reaction channel.

NOx is a major pollutant product from combustion processes. In hydrocarbon combustion there are a number of radicals as CH_2 , C_2H , CH_3 and C_2H_3 can react with NO¹⁻³. A large amount of CH_3 exists in natural gas combustion flame. Therefore the reaction of CH_3 with NO is very important.

A rate constant ($k_{\infty} = 1.5 \times 10^{-11} \exp(-60 \text{k/T})$ cm³·molecule⁻¹·s⁻¹) of the overall CH₃+NO reaction was measured with laser flash photolysis/absorption spectroscopy over the temperature range 296-509 K and at pressure of 25-600 Torr by Davies *et al.*⁴. Lifshitz *et al.*⁵ evaluated a rate expression for the reaction CH₃+NO→HCN+H₂O as $10^{11.8} \exp(-15.0 \times 10^{3}/\text{RT})$ cm³·mol⁻¹·s⁻¹ in shock tube. Kaiser⁶ measured pressure dependence of the rate constant for the reaction CH₃+NO. Theoretically, Nguyen *et al.*⁷ employed *ab initio* molecular orbital method to calculate the potential energy surface of the reaction CH₃+NO→HCN+H₂O. Obviously the studies of this important reaction is insufficient. Even the possible reaction channels are not clear.

In this paper, we report our experimental investigation on the CH_3 +NO reaction using time-resolved Fourier transform infrared (TR-FTIR) emission spectroscopy. Several primary products have been observed in the IR spectrum and some possible reaction channels are found.

Experimental

Details of the experiment apparatus of time-resolved FTIR spectroscope have been described in previous work⁸. In the experiment a gas mixture consisted of 80 Pa CH_3Br (99%) and 206 Pa NO (99%) flows through the reaction chamber. Methyl radical was

^{*} E-mail: kong@mardlab.icas.ac.cn

Hui WANG et al.

produced by laser photolysis of methyl bromide at 248 nm (KrF laser, Lambda Physik LPX305I, 200 mJ/pulse). The IR emission from the vibrationally excited products was detected by TR-FTIR spectrometer (Nicolet, 800). The spectrum between 1800 cm⁻¹ and 4000 cm⁻¹ was recorded with a spectral resolution at 16 cm⁻¹. In order to improve signal to noise ratio, each spectrum was accumulated 10 times.

Result and Discussion

Nascent Products

The photolytic reaction of CH₃Br is :

 $CH_3Br \xrightarrow{248nm} CH_3+Br+46.6 \text{ kcal/mol}$

No IR emission signal was observed in the 248 nm laser photolysis of pure CH_3Br . Therefore, it provides a neat IR emission background for the spectroscopic investigation of CH_3 +NO reaction.

When CH₃Br was mixed with NO and led into the reaction chamber, then fired by the laser, a transient IR emission was recorded. The IR emitters are the nascent products of CH₃+NO reaction. **Figure 1** shows the IR emission spectrum at 5 μ s after the laser ignition. A sharp peak between 1750 cm⁻¹ and 1941 cm⁻¹ corresponds to the C-O stretching of HCO (v₃ 1863 cm⁻¹) was observed. This peak increases with time but attenuates gradually after 23 μ s. The weak band between 1941 cm⁻¹ and 2126 cm⁻¹ could be attributed to the emission of vibrationally excited HCN (v₁ 2089 cm⁻¹). A strong emission between 3170 cm⁻¹ and 3611 cm⁻¹ is recorded. The emission possibly can be assigned to the N-H stretching of NH₂ (v₃ 3301 cm⁻¹), HNCO (v₁ 3538 cm⁻¹) and the C-H stretching of HCN (v₃ 3312 cm⁻¹). The spectrum between 2370 cm⁻¹ and 2570 cm⁻¹ is HNO (200)–(100) band origin and between 2570 cm⁻¹ and 2870 cm⁻¹ is HNO (100)–(000) band origin. The secondary product HNO is generated from HCO+NO→ HNO+CO.

Reaction channels

These products observed are possibly produced from several thermodynamically accessible channels as follows:

 $CH_3 + NO \rightarrow HNCO+H_2 -81.1$ $\rightarrow HCO+H_2O -81.8$ $\rightarrow HCO+NH_2 -6.0$

From IR emission spectra it is known that $HCO + NH_2$ and $HCN+H_2O$ channels exist and $HNCO+H_2$ channels may occur.

Figure 1 The IR emission spectrum at 5 μ s in CH₃ + NO reaction system

Reaction mechanism

For the CH₃+NO \rightarrow HCN+H₂O channel, with the consideration of the factors on symmetry-forbiddenness and energetics, the reaction CH₃+NO starts possibly through the formation of intermediate I, when NO molecule of linear ground state attaches to carbon possessing an unpaired electron in the CH₃ radical. The formation of intermediate II is 1, 2-hydrogen shift *via* intermediate I. This intermediate II can further undergo a 1, 2-hydrogen migration and forms intermediate III. Intermediate III rearranges and produces HCN and H₂O.

In brief, the intense emission of HCO (v_3) and possible primary products HCN (v_1 , v_3), HNCO (v_1) and NH₂ (v_3) have been observed for CH₃+NO reaction. Three reaction channels are suggested with experimental evidences. Further studies on the reaction mechanism employing *ab initio* molecular orbitial theory is invoked.

Hui WANG et al.

Acknowledgments

This study is supported by the National Natural Science Foundation of China and Department of Science and technology.

References

- 1. H. Wang, J. X. Liu, B. S. Wang, F. A. Kong, ACTA Physico-Chimica Sinica, 2000, 16, 674.
- H. M. Su, W. T. Mao, F. A. Kong, Chem. Phys. Lett., 2000, 322, 21. 2.
- 3.
- H. M. Su, J. X. Yang, F. A. Konf, *et al.*, *Chem. Phys. Lett.*, 2000, 326,73. J. W. Davies, N. J. B. Green, M. J. Pilling, *J. Chem. Soc. Faraday Trans.*, 1991, 87, 2317. 4.
- 5. A. Lifshitz, C. Tamburu, J. Phys. Chem., 1993, 97, 4085.
- E. W. Kaiser, J. Phys. Chem., 1993, 97,11681. 6.
- 7. M. T. Nguyen, D. Sengupta, L. G. Vanquickenborne, J. Phys. Chem., 1996, 100,10956.
- Q. H. Zhu, S. L. Huang, X. B. Wang, F. A. Kong, et al. Chinese J Chemi Physics, 1993, 6, 87. 8.

Received 23 February, 2001

974